Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find whether f(x) is continuous or discontinuous at the indicated point $f(x)=\left \{\begin{array}{1 1}\large\frac{e^ {\Large\frac{1}{x}}}{1+e^ {\Large\frac{1}{x}}},\normalsize & if\;x\neq 0\\0, & if\;x=0\end{array}\right.$ at $x=0$.

Can you answer this question?

1 Answer

0 votes
  • A function is discontinuous at a point if both the LHL and the RHL does not exist.
  • It is also discontinuous if LHL $\neq$ RHL.
Step 1:
Given : $f(x)=\left \{\begin{array}{1 1}\large\frac{e^ {\Large\frac{1}{x}}}{1+e^ {\Large\frac{1}{x}}},\normalsize & if\;x\neq 0\\0, & if\;x=0\end{array}\right.$ at $x=0$.
We have $f(x)=\large\frac{e^{\Large\frac{1}{x}}}{1+e^{\Large\frac{1}{x}}}$, $x\neq 0$
The function is defined on both side of $x=0$,by the same relation,but it is still discontinuous .Let us see that.
Step 2:
The left hand limit :
$\lim\limits_{\large x\to 0^-}f(x)=\lim\limits_{\large h\to 0}f(0-h)$
$\qquad\qquad=\lim\limits_{\large h\to 0}f(-h)$
$\qquad\qquad=\lim\limits_{\large h\to 0}\large\frac{e^{-\Large\frac{1}{h}}}{1+e^{-\Large\frac{1}{h}}}$
As $h\to 0\Rightarrow \large\frac{1}{h}$$\to \infty$
But $e^{-\infty}=0$
Step 3:
The right hand limit :
$\lim\limits_{\large x\to 0^+}f(x)=\lim\limits_{\large h\to 0}f(0+h)$
$\qquad\qquad=\lim\limits_{\large h\to 0}\large\frac{e^{\Large\frac{1}{h}}}{1+e^{\Large\frac{1}{h}}}$
Divide the numerator and the denominator by $e^{\Large\frac{1}{h}}$
$\lim\limits_{\large h\to 0}f(h)=\large\frac{1}{1+\large\frac{1}{e^{\Large h}}}$
On applying limits
Therefore the function is discontinuous at $x=0$
answered Jun 26, 2013 by sreemathi.v
edited Jun 26, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App