Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the value of k in the following so that the function $f$ is continuous at the indicated point: $f(x)=\left \{\begin{array}{1 1}\frac{\large 2^{x+2}-16}{4^{\large x}-16}, & if\;x\neq 2\\k, & if\;x=2\end{array}\right.$ at $x=2$

$\begin{array}{1 1} k=\frac{1}{2} \\k= \frac{1}{4} \\ k=2 \\ k=4 \end{array} $

Can you answer this question?

1 Answer

0 votes
  • A function is said to be continuous at a point $'a'$ if the LHL = RHL.
  • (i.e) $\lim\limits_{\large x\to a^+}f(x)=\lim\limits_{\large x\to a^-}f(x)$
Step 1:
Consider $f(x)=\large\frac{2^{\Large x+2}-16}{4^{\Large x}-16}$
$\qquad\qquad\;\;\;\;=\large\frac{2^{\Large x}.2^{\Large 2}-16}{2^{\Large 2x}-16}$
$\qquad\qquad\;\;\;\;=\large\frac{4(2^{\Large x}-4)}{(2^{\Large x})^{\Large 2}-16}$
$\qquad\qquad\;\;\;\;=\large\frac{4(2^{\Large x}-4)}{(2^{\Large x})^{\Large 2}-4^{\Large 2}}$
We know that $(a^2-b^2)=(a+b)(a-b)$
$\qquad\qquad\;\;\;\;=\large\frac{4(2^{\Large x}-4)}{(2^{\Large x}-4)(2^{\Large x}+4)}$
$\qquad\qquad\;\;\;\;=\large\frac{4}{(2^{\Large x}+4)}$
Step 2:
For $f(x)$ to be continuous
$\lim\limits_{\large x\to 2}f(x)=f(2)$
$\qquad\quad\;\;=\lim\limits_{\large x\to 2}\large\frac{4}{2^{\Large x}+4}$
$\qquad\quad\;\;=\large\frac{4}{2^{\Large 2}+4}$
Step 3:
Since the function is continuous $f(2)=k$ at $x=2$
Therefore $k=\large\frac{1}{2}$
answered Jun 26, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App