Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Differentiate the following w.r.t $x$: $2^{\large \cos^2x}$

$\begin{array}{1 1} (A) \;2\cos^2x\log 2(\sin 2x) \\(B) \;-2^{\large\cos^2x}\log 2(\sin 2x) \\ (C)\;2\cos^2x\log 2(\sin 2x) \\ (D)\;-2\cos^2x\log 2(\cos 2x) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{d}{dx}$$(\cos x)=-\sin x$
  • $2\sin x\cos x=\sin 2x$
Step 1:
Let us take $\log$ on both sides
$\log y=\cos^2x.\log 2$
$\log(x)^a=a\log x$
Now differentiating on both sides we get,
$\large\frac{1}{y}\frac{dy}{dx}=$$(2\cos x.\sin x)\log 2$
But $2\sin x\cos x=\sin 2x$
$\Rightarrow \large\frac{dy}{dx}$$=-y\log 2(\sin 2x)$
Step 2:
Substituting for $y$ we get,
$\large\frac{dy}{dx}$$=-2^{\large\cos^2 x}\log 2(\sin 2x)$
answered Jun 27, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App