Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Differentiate the following w.r.t x: $(\sin x)^{\large\cos x}$.

Can you answer this question?

1 Answer

0 votes
  • Product rule : $\large\frac{d}{dx}$$(uv)=u.\large\frac{d}{dx}$$(v)+v.\large\frac{d}{dx}$$(u)$
  • If $y=[f(x)]^g(x)$.Taking $\log$ on both sides,we have $\log y=g(x).\log[f(x)].$
Step 1:
$y=(\sin x)^{\large \cos x}$
Take $\log$ on both sides.
$\log x^{\large a}=a\log x$
$\log y=\cos x.\log(\sin x)$
Now differentiating on both sides,
Apply product rule,
Step 2:
Let $u=\cos x$
$\large\frac{du}{dx}$$=-\sin x$
$v=\log(\sin x)$
$\large\frac{dv}{dx}$$=\large\frac{1}{\sin x}$$\cos x$
$\quad\;\;=\cot x$
Hence $\large\frac{1}{y}\frac{dy}{dx}$$=\cot x.\tan x+\log(\sin x).(-\sin x)$
$\Rightarrow \large\frac{1}{y}\frac{dy}{dx}$$=\cos x.\tan x-\sin x\log(\sin x)$
Therefore $\large\frac{dy}{dx}$$=y[\cos x\cot x-\sin x\log(\sin x)]$
Substituting for $y$,
$\large\frac{dy}{dx}$$=(\sin x)^{\large\cos x}[\cos x\cot x-\sin x\log(\sin x)]$
answered Jun 27, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App