Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Differentiate the following w.r.t $x$ : $\sin^{-1} \big[\large\frac{1}{\sqrt 2}$$\sin x+\large\frac{1}{\sqrt 2}$$\cos x\big],\large\frac{-\pi}{4}<$$x<\large\frac{\pi}{4}$.

Can you answer this question?

1 Answer

0 votes
  • $\cos A\cos B+\sin A\sin B=sin(A+B)$
  • $\large\frac{d}{dx}$$(x^n)=nx^{n-1}$
Step 1:
$y=\sin^{-1} \big[\large\frac{1}{\sqrt 2}$$\sin x+\large\frac{1}{\sqrt 2}$$\cos x\big]$
$\cos\large\frac{\pi}{4}=\large\frac{1}{\sqrt 2}$ and $\sin\large\frac{\pi}{4}=\frac{1}{\sqrt 2}$
$\;\;\;=\sin^{-1} \big[\sin\large\frac{\pi}{4}$$\sin x+\cos\large\frac{\pi}{4}$$\cos x\big]$
This can be written as
$\;\;\;=\sin^{-1} \big[\cos\large\frac{\pi}{4}$$\cos x+\sin\large\frac{\pi}{4}$$\sin x\big]$
Step 2:
But $\cos A\cos B+\sin A\sin B=\sin(A+B)$
On differentiating with respect to $x$ we get,
answered Jun 28, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App