Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Vector Algebra
0 votes

If $\overrightarrow a,\overrightarrow b$ are mutually $\perp$ unit vectors and the vectors $x\overrightarrow a+x\overrightarrow b+z(\overrightarrow a\times\overrightarrow b ),\:\:\overrightarrow a+(\overrightarrow a\times\overrightarrow b),\:\:and\:\:z\overrightarrow a+z\overrightarrow b+y(\overrightarrow a\times\overrightarrow b)$ lie in a plane then $Z$ is ?

$\begin {array} {1 1} (A)\;A.M \: of \: x \: and \: y & \quad (B)\;G.M \: of \: x \: and \: y \\ (C)\;H.M \: of \: x \: and \: y & \quad (D)\;Equal \: to \: zero \end {array}$

Can you answer this question?

1 Answer

0 votes
Given that $\overrightarrow a\:and\:\overrightarrow b$ are mutually $\perp$ unit vectors.
$\Rightarrow\:\overrightarrow a\times\overrightarrow b\neq 0$
Also given that $x\overrightarrow a+x\overrightarrow b+z(\overrightarrow a\times\overrightarrow b),\:\overrightarrow a+(\overrightarrow a\times\overrightarrow b),\:and\:\:z\overrightarrow a+z\overrightarrow b+y(\overrightarrow a\times\overrightarrow b)$ are coplanar.
$\Rightarrow\:[x\overrightarrow a+x\overrightarrow b+z(\overrightarrow a\times\overrightarrow b)\:\overrightarrow a+(\overrightarrow a\times\overrightarrow b)\:\:\:z\overrightarrow a+z\overrightarrow b+y(\overrightarrow a\times\overrightarrow b)]=0$
$\Rightarrow\:\left |\begin {array}{ccc} x & x & z\\ 1 & 0 & 1\\ z & z & y\end {array}\right|.[\overrightarrow a\:\overrightarrow b\:\overrightarrow a\times\overrightarrow b]=0$
$\Rightarrow\:(z^2-xy).\big[(\overrightarrow a\times \overrightarrow b).(\overrightarrow a \times\overrightarrow b)\big]=0$
$\Rightarrow\:(z^2-xy)|\overrightarrow a\times\overrightarrow b|^2=0$
Since $ |\overrightarrow a\times\overrightarrow b|\neq 0$, $z^2-xy=0$
$\Rightarrow\:z$ is $G.M.\:of\:x\:and\:y$
answered Jan 6, 2014 by rvidyagovindarajan_1
edited Mar 25, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App