Ask Questions, Get Answers

Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Vector Algebra

If $\overrightarrow a=\hat i+\hat j+\hat k,\:\:\overrightarrow c=\hat j-\hat k$ and $\overrightarrow b$ is such that $\overrightarrow a\times\overrightarrow b=\overrightarrow c\:\:and\:\:\overrightarrow a.\overrightarrow b=3$ then $\overrightarrow b=?$

$\large(a)\:3\hat i-\hat j-\hat k\:\:\qquad\:(b)\:\:\large\frac{1}{3}(5\hat i+2\hat j+2\hat k)\:\:\qquad\:\:(c)\:\:\large\frac{1}{3}(5\hat i-2\hat j-2\hat k)\:\:\qquad\:\:(d)\:\:none\:of\:these.$

1 Answer

Let $\overrightarrow b=x\hat i+y\hat j+z\hat k$,
Given: $\overrightarrow a.\overrightarrow b=3$
$\Rightarrow\: x+y+z=3$..........(i)
Also given that $\overrightarrow a\times\overrightarrow b=\overrightarrow c$
$\Rightarrow\: (z-y)\hat i+(x-z)\hat j+(y-x)\hat k=\hat j-\hat k$
Solving (i) and (ii) we get $x=\large\frac{5}{3}$, $y=\large\frac{2}{3}$ and $z=\large\frac{2}{3}$
$\therefore \overrightarrow b=\large\frac{1}{3}$$(5\hat i+2\hat j+2\hat k)$
answered Jan 7, 2014 by rvidyagovindarajan_1

Related questions