Chat with tutor

Ask Questions, Get Answers

Questions  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Vector Algebra

If $\overrightarrow a=(-1,1,1)\:\:\overrightarrow b=(2,0,1)\:and\:\overrightarrow x$ is vector such that $\overrightarrow x.\overrightarrow a=7,\:\overrightarrow x.\overrightarrow b=0$ and $\overrightarrow a,\overrightarrow b,\overrightarrow x$ are coplanar, then $\overrightarrow x=?$

$(a)-3\hat i+4\hat j+6\hat k\:\:\qquad\:(b)\:\:3\hat i+16\hat j-6\hat k\:\:\qquad\:(c)\:\:-3/2\hat i+5/2\hat j+3\hat k\:\:\qquad\:(d)\:\:3\hat i+4\hat j-6\hat k$

1 Answer

Let the vector $\overrightarrow x=x_1\hat i+x_2\hat j+x_3\hat k$
Given $\overrightarrow x,\:\overrightarrow a\:and\:\overrightarrow b$ are coplanar.
$\Rightarrow\:\overrightarrow x.(\overrightarrow a\times\overrightarrow b)=0$
$\Rightarrow\:\overrightarrow x.(\hat i+3\hat j-2\hat k)=0$
Also given that $\overrightarrow x.\overrightarrow a=7\:\:and\:\:\overrightarrow x.\overrightarrow b=0$
$\Rightarrow\:-x_1+x_2+x_3=7............(ii)$ and $2x_1+x_3=0.......(iii)$
Solving $(i)\:\:(ii)\:\:and\:\:(iii)$ we get $x_1=-\large\frac{3}{2}$$,\:x_2=\large\frac{5}{2}$$,\:x_3=3$
$\therefore\:\overrightarrow x=-\large\frac{3}{2}$$\hat i+\large\frac{5}{2}$$\hat j+3\hat k$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.