Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Differentiate $\large \frac{x}{\sin x}\;\normalsize w.r.t\;\sin x.$

Can you answer this question?

1 Answer

0 votes
  • Let $u=f(x)$ and $v=g(x)$ be two function of $x$,then to find the derivative of $f(x)$ w.r.t $g(x)$ (i.e) $\large\frac{du}{dv}$$=\large\frac{du/dx}{dv/dx}$
  • Quotient rule : $\large\frac{d}{dx}\big(\large\frac{u}{v}\big)=\large\frac{v.(\Large\frac{du}{dx})-\normalsize u.(\Large\frac{dv}{dx})}{v^2}$
Step 1:
Given : $\large\frac{x}{\sin x}$
Let $u=\large\frac{x}{\sin x}$ and Let $v=\sin x$
Differentiating w.r.t $x$ by applying the quotient rule.
$\large\frac{du}{dx}=\large\frac{\sin x(1)-x.\cos x}{\sin^2 x}$
$\quad\quad=\large\frac{\sin x-x.\cos x}{\sin^2 x}$
Step 2:
Consider $v=\sin x$
Differentiating w.r.t $x$ we get,
$\large\frac{dv}{dx}=$$\cos x$
Therefore $\large\frac{du}{dv}$$=\large\frac{du/dx}{dv/dx}$
$\qquad\qquad\;\;\;=\large\frac{\Large\frac{\sin x-x.\cos x}{\sin^2 x}}{\cos x}$
$\qquad\qquad\;\;\;=\large\frac{\big(\Large\frac{\sin x}{\cos x}-\frac{x\cos x}{\cos x}\big)}{\sin^2 x}$
$\large\frac{du}{dx}=\large\frac{\tan x-x}{\sin^2 x}$
answered Jul 2, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App