logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Probability
0 votes

A pair of dice is rolled together till a sum of either 5 or 7 is obtained. The probability that 5 comes before 7 is

$\begin {array} {1 1} (A)\;\large\frac{2}{5} & \quad (B)\;\large\frac{1}{5} \\ (C)\;\large\frac{3}{5} & \quad (D)\;None\: of \: these \end {array}$

 

Can you answer this question?
 
 

1 Answer

0 votes
The probability of getting a total of 5 using a pair of dice is $ \large\frac{1}{9}$ and that
of getting a total of 7 is $ \large\frac{1}{6}$
Also $ P( \overline 5\: \overline 7) = \large\frac{36-10}{36}$
$ \large\frac{13}{18}$
Because there are 10 cases in favour of getting a sum of 5 or 7.
5 can come before 7 in the folowing cases : 5 or $ ( \overline 5\: \: \overline 7 ) $
5 0r $ ( \overline 5\: \: \overline 7 ) \: ( \overline 5\: \: \overline 7 ) $ 5 or.......
Hence the required probability is
$ \large\frac{1}{9} + \large\frac{13}{18} \times \large\frac{1}{9} + \large\frac{13}{18} \times \large\frac{13}{18} \times \large\frac{1}{9} +.....$
$ \Large\frac{ \Large\frac{1}{9}}{1-\Large\frac{13}{18}}$
$ = \large\frac{2}{5}$
Ans : (A)

 

answered Jan 8, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...