$\begin {array} {1 1} (A)\;\large\frac{8}{25} & \quad (B)\;\large\frac{2}{5} \\ (C)\;\large\frac{3}{5} & \quad (D)\;\large\frac{21}{25} \end {array}$

Case (i) The first ball is white and second is red.

Its probability = $ \large\frac{3}{5} \times \large\frac{2}{4}$

$ = \large\frac{3}{10}$

Case (ii) The first ball is red and second is red.

Its probability = $ \large\frac{ \not 2}{5} \times \large\frac{1}{\not 4\: 2}$

$ = \large\frac{1}{10}$

$ \therefore $ Required probability = $ \large\frac{3}{10} +\large\frac{1}{10}$

$ = \large\frac{4}{10} = \large\frac{2}{5}$

Ans : (B)

Ask Question

Tag:MathPhyChemBioOther

Take Test

...