logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Probability

The probability that $ \sin^{-1} ( \sin \: x)+ \cos^{-1} ( \cos\: y)$ is an integer $ x,y \in \{ 1,2,3,4 \} $ is

$\begin {array} {1 1} (A)\;\large\frac{1}{6} & \quad (B)\;\large\frac{3}{16} \\ (C)\;\large\frac{15}{16} & \quad (D)\;None\: of \: these \end {array}$

 

Download clay6 mobile app

1 Answer

For $ \sin^{-1} ( \sin\: x)+ \cos^{-1} ( \cos \: y)$ to be an integer $x$ should lie between
$ \bigg[ -\large\frac{\pi}{2}, \large\frac{\pi}{2} \bigg]$
and $y$ should lie between $ [ 0, \pi ]$
$ \Rightarrow x = 1\: and \: y=1,2,3$
Required probability = $ \large\frac{3}{16}$
Ans : (B)

 

answered Jan 8, 2014 by thanvigandhi_1
 

Related questions

...