Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Probability
0 votes

If X is binomial variate with parameters $n$ and $p$ where $ 0 < P < 1$ such that $ \large\frac{P(x=r)}{P(x=n-r)}$ is independent of n and r then p equals.

$\begin {array} {1 1} (A)\;\large\frac{1}{2} & \quad (B)\;\large\frac{1}{3} \\ (C)\;\large\frac{1}{4} & \quad (D)\;None\: of \: these \end {array}$


Can you answer this question?

1 Answer

0 votes
We have
$ \large\frac{P(x=r)}{P(x=n-r)} = \large\frac{n\: c_r(1-P)^{n-r}}{n\: C_{n-r} (1-P)^r}$
$ = \bigg( \large\frac{1-P}{P} \bigg)^{n-2r}$
$ = \bigg( \large\frac{1}{P}-1 \bigg)^{n-2r}$
For this to be independent of $n$ and $r$, we must have
$ \large\frac{1}{P}-1=1$
$ P = \large\frac{1}{2}$
Hence (A) is correct option
answered Jan 9, 2014 by thanvigandhi_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App