$(a)\;3\qquad(b)\;1\qquad(c)\;2\qquad(d)\;4$

$\lambda=\large\frac{1}{\bar v}=\frac{1}{15222.22} = 6.569\times 10^{-5}cm = 6569\overset{\circ}{A}$

Clearly, the spectral line lies in the visible region (i.e.) in Balmer series

Hence, $n_1=2$

Using the relation for wave number for H-atom

$\Large\bar v=\frac{1}{\lambda}(\large\frac{1}{n_1^2}-\frac{1}{n_2^2})$

$\Rightarrow 15222.22=1.096\times 10^5\Large(\frac{1}{2^2}-\frac{1}{(n_2)^2})$

$\Rightarrow n_2=3$

Hence (a) is the correct answer.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...