logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class12  >>  Probability
0 votes

In a binomial distribution $B \bigg( n, P = \large\frac{1}{4} \bigg)$ If the probability of at least one success is greater than or equal to $ \large\frac{9}{10}$ then $n$ is greater than

$\begin {array} {1 1} (A)\;\large\frac{1}{log_{10}4-log_{10}3} & \quad (B)\;\large\frac{1}{log_{10}4+log_{10}3} \\ (C)\;\large\frac{9}{log_{10}4-log_{10}3} & \quad (D)\;\large\frac{4}{log_{10}4-log_{10}3} \end {array}$

 

Can you answer this question?
 
 

1 Answer

0 votes
According to the condition $ 1- \bigg( \large\frac{3}{4} \bigg)^n \geq \large\frac{9}{10}$
$ \Rightarrow \bigg( \large\frac{3}{4} \bigg)^n \leq 1- \large\frac{9}{10} = \large\frac{1}{10}$
$ \Rightarrow \bigg( \large\frac{4}{3} \bigg)^n \geq 10$
$ \Rightarrow n [ \log\: 4 - \log \: 3 ] \geq \log_{10}10=1$
$ n \geq \large\frac{1}{\log_{10}4-\log_{10}3}$
Ans : (A)
answered Jan 9, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...