$(A)\;\frac {\sigma}{\pi \in _0} \hat j \\ (B)\;\frac {\sigma}{\pi \in _0} \hat i \\ (C)\; \frac {-\sigma}{\pi \in _0} \hat i \\ (D)\;\frac {\sigma}{\pi \in _0} \hat j $

$ dE_j=0$

$dE_x=2 dE \sin \theta$

$dE=\large\frac{\sigma \times R d \theta}{2 \pi \in _0R}$

$\qquad= \large\frac{\sigma d \theta}{2 \pi \in _0}$

$E_x=\int d E_x$

$\qquad= \int \limits_0^{\pi/2} \large\frac{\sigma}{\pi \in _0}$$ \sin \theta d \theta $

$\qquad=\large\frac{\sigma}{\pi \in _0}$

Hence B is the correct answer.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...