logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Probability

A is targetting to B, b and C are targetting to A. probability of hitting the target by A,B and C are $ \large\frac{2}{3}, \large\frac{1}{2} \: and \: \large\frac{1}{3}$ respectively. If A is hit then the probability that B hits the target and C does not is

$\begin {array} {1 1} (A)\;\large\frac{1}{2} & \quad (B)\;\large\frac{3}{4} \\ (C)\;\large\frac{2}{3} & \quad (D)\;None\:of \: these \end {array}$

 

1 Answer

Let $ P(A) = $ Probability that A will hit B
Let $ P(B) = $ Probability that B will hit A
Let $ P(C) = $ Probability that C will hit A
Let $ P(E) = $ Probability that A will be hit.
Then
$P(E) = 1-P ( \overline B \cap \overline C )$
$ = 1- P( \overline B ). P ( \overline C )$
$ 1- \large\frac{1}{2}. \large\frac{2}{3}$
$ = \large\frac{2}{3}$
$ \Rightarrow P \bigg( \large\frac{ B \cap \overline C }{E} \bigg) = \large\frac{P(B).P( \overline C )}{ P(E)}$
$ \Large\frac{ \Large\frac{1}{2}.\Large\frac{1}{2}}{ \Large\frac{2}{3}} = \large\frac{1}{2}$
Hence Ans (A)
answered Jan 9, 2014 by thanvigandhi_1
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X