Browse Questions

# Find the value of x and y if : $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix}$ + $\begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$

$\begin{array}{1 1} x = 0 \;y = 0 \\ x = 3\; y = 2 \\ x = -3\; y = -3 \\ x = 3 \;y = 3 \end{array}$

Toolbox:
• If the order of 2 matrices are equal, their corresponding elements are equal, i.e, if $A_{ij}=B_{ij}$, then any element $a_{ij}$ in matrix A is equal to corresponding element $b_{ij}$ in matrix B.
• We can then match the corresponding elements and solve the resulting equations to find the values of the unknown variables.
• The sum / difference $A(+/-)B$ of two $m$-by-$n$ matrices $A$ and $B$ is calculated entrywise: $(A (+/-) B)_{i,j} = A_{i,j} +/- B_{i,j}$ where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
• The scalar multiplication $cA$ of a matrix $A$ and a number $c$ (also called a scalar in the parlance of abstract algebra) is given by multiplying every entry of $A$ by $c$.
Step1:
Given:
$2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} 2 & 6 \\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$
$\Rightarrow \begin{bmatrix}2+y & 6+0\\0+1 & 2x+2\end{bmatrix}=\begin{bmatrix}5 & 6\\1 & 8\end{bmatrix}$
Step2:
The above two matrices are equal,hence their corresponding elements should be equal.
2+y=5
y=5-2
y=3
2x+2=8
2x=8-2=6
x=3.