Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  3-D Geometry
0 votes

If $A(4,7,8),\:B(2,3,4),\:C(2,5,7)$ are vertices of a triangle then the length of internal bisector of angle $A$ is ?

$\begin{array}{1 1}(A) \large\frac{3\sqrt {34}}{2} \\ (B) \large\frac{2\sqrt {34}}{3} \\(C) \large\frac{\sqrt {34}}{2} \\ (D) \large\frac{\sqrt {34}}{3} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • The internal angular bisector of angle $A$ divides the side $BC$ in the ratio $AB:AC$
Given: $A(4,7,8),\:B(2,3,4)\:and\:C(2,5,7)$
$\Rightarrow\:AB=\sqrt {4+16+16}=6$
$\Rightarrow\:AC=\sqrt {4+4+1}=3$
Let the angular bisector of $A$ be $AD$, where $D$ is on $BC$.
$\Rightarrow\:D$ divides $BC$ in the ratio $6:3=2:1$
$\therefore $ coordinates of $D$ using section formula is given by
Th length of the internal angular bisector of angle $A$ is $AD$
$AD=\sqrt {4+64/9+4}=\large\frac{\sqrt {136}}{3}=\frac{2\sqrt {34}}{3}$
answered Jan 12, 2014 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App