Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A point charge Q is placed at the centre of an imaginary Gaussian surface. Find your through curved surface.


$(A)\;\frac{al}{2 \in _0 \sqrt {\frac{l^2}{4} +R^2}} \\ (B)\;zero \\ (C)\; \frac{Q}{2 \in_0 }\bigg[ 1- \frac{l}{2 \sqrt {R^2+\frac{l^2}{4} }}\bigg] \\ (D)\;\frac{Q}{\in_0 }\bigg[ 1- \frac{l}{2 \sqrt {R^2+\frac{l^2}{4} }}\bigg] $

Can you answer this question?

1 Answer

0 votes
$\phi =\phi _{curved}+\phi _{circle_1}+\phi _{circle 2}$
=> $\phi =\phi _{cs}+2 \phi _{c1} \bigg[ \phi _{c_1}=\phi _{c_2}\bigg]$
=> $\phi _{curved}= \phi _{cs}=\phi -2 \phi _{c_1}$
$\qquad= \large\frac{Q}{\in _0}$$- 2 \phi _{c_1}$
$\overrightarrow{E} =\large\frac{Q}{4 \pi \in_0} \times \frac{1}{(x^2+l^2/4)}$
$d \phi _{c1}=\overrightarrow {E} . d \overrightarrow{s} =E \times 2\pi x dx \times \cos \theta$
$\qquad= \large\frac{Q}{2 \in _0} \times \frac{x dx}{(x^2 +l^2/4)} \times \frac{l/2}{\sqrt {x^2 +l^2/4}}$
$\qquad= \large\frac{Ql}{4 \in _0} \frac{x dx}{(x^2 +l^2/4)^{3/2}} $
=> $ \phi _{c1}= \large\frac{Ql}{4 \in _0} \int \limits_0^R \frac{x dx}{(x^2 +l^2/4)^{3/2}}$
$\phi_{cs}$= $\large\frac{Q}{2 \in_0 }\bigg[ 1- \frac{l}{2 \bigg[R^2+\frac{l^2}{4} \bigg]^{1/2}}\bigg]$
$=>\large \frac{Q}{2 \in_0 }\bigg[ 1- \frac{l}{2 \sqrt {R^2+\frac{l^2}{4} }}\bigg]$
Hence C is the correct answer.


answered Jan 13, 2014 by meena.p
edited Aug 1, 2014 by thagee.vedartham

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App