Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Differentiate the functions given in w.r.t. $x : $ $ x^{\large x} - 2^{\large sin \: x} $

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{dy}{dx}=\frac{du}{dx}-\frac{dv}{dx}$
  • $\log m^n=n\log m$
Step 1:
Let $y=x^{\large x}-2^{\large\sin x}$
Now $u=x^{\large x}$
Taking $\log$ on both sides
$\log u=\log x^{\large x}$
$\log u=x\log x$
$\log m^n=n\log m$
Step 2:
Differentiating on both sides
$\large\frac{1}{u}\frac{du}{dx}$$=1.\log x+x.\large\frac{1}{x}$
$\qquad\;=\log x+1$
$\large\frac{du}{dx}$$=u(1+\log x)$
$\qquad=x^{\large x}(1+\log x)\quad [Replacing\; u=x^{\large x}$]
Step 3:
Taking $v=2^{\large\sin x}$
Taking $\log$ on both sides
$\log v=\log 2^{\large\sin x}$
$\qquad=\sin x\log 2$
$\large\frac{1}{v}\frac{dv}{dx}$$=\cos x\log 2$
$\large\frac{dv}{dx}$$=v\cos x\log 2$
$\quad=2^{\large\sin x}\cos x \log 2$
Step 4:
$\quad=x^{\large x}(1+\log x)-2^{\large\sin x}\cos x\log 2$
answered May 8, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App