Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find electric field at point $(a,a,a) $ due to three infinitely long lines of charge density $\lambda$ along $x,y $ and $ z$ axis

$(A)\; \frac{\lambda} {3 \pi \in _0 a} (\hat i +\hat j + \hat k) \\ (B)\;\frac{\lambda} {2 \sqrt 2 \pi \in _0 a} (\hat i +\hat j + \hat k) \\ (C)\; \frac{\lambda} {2 \pi \in _0 a} (\hat i +\hat j + \hat k) \\ (D)\;\frac{\sqrt 2\lambda} { \pi \in _0 a} (\hat i +\hat j + \hat k) $

Can you answer this question?

1 Answer

0 votes
Due to wire along z-axis,
$\overrightarrow {E_3}=\large\frac{\lambda}{2 \pi \in _0 (a \sqrt 2)} $$\quad ( \cos 45^{\circ} \hat i + \cos 45^{\circ} \hat j)$
=> $\overrightarrow {E_3} =\large\frac{\lambda}{4 \pi \in _0 a} $$(\hat i +\hat j)$
$E_1=\large\frac{\lambda}{4 \pi \in_0 a}$$(\hat j+\hat k)$
=> $\overrightarrow {E_2} =\large\frac{\lambda}{4 \pi \in _0 a} $$(\hat i +\hat k)$
=> $\overrightarrow {E}_{resultant } =\overrightarrow {E_1}+\overrightarrow {E_2}+\overrightarrow {E_3}$
$\large\frac{\lambda} {2 \sqrt 2 \pi \in _0 a} (\hat i +\hat j + \hat k)$
Hence B is the correct answer.
answered Jan 13, 2014 by meena.p
edited Aug 22, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App