$(A)\;zero\\ (B)\;\frac{q}{4\pi \in _0 ln (2)} \\ (C)\; \frac{q ln(2)}{4\pi \in _0} \\ (D)\;Infinite $

$V= \large\frac{1}{4 \pi \in _0} \bigg\{ \large\frac{q}{1} +\frac{q}{3} +\frac{q}{5} +.....\bigg\}+ \frac{1}{4 \pi \in _0} \bigg\{ \frac{-q}{2}-\frac{q}{4}-\frac{q}{6}+....\bigg\}$

$\qquad= \large\frac{1}{4 \pi \in _0 } \bigg\{1-\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +\frac{1}{5} -\frac{1}{6} +.....\bigg\}$

=> $\large \frac{1}{4\pi \in _0}$$ q ln (1+1)$

=> $ \large \frac{q ln(2)}{4\pi \in _0}$

Hence C is the correct answer.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...