info@clay6.com
logo

Ask Questions, Get Answers

X
 
Answer
Comment
Share
Q)

Calculate the energy emitted when electrons of 1.0g atom of hydrogen under go transition giving the spectral lines of lowest energy in the visible region of its atomic spectra.$R_H=1.1\times 10^7m^{-1},c=3\times 10^8msec^{-1}$ and $h=6.62\times 10^{-34}Jsec$

$(a)\;182.5KJ\qquad(b)\;205KJ\qquad(c)\;150.89KJ\qquad(d)\;190.36KJ$

2 Answers

Comment
A)
Need homework help? Click here.
For visible line spectrum,(i.e) Balmer series $n_1=2$.Also for minimum energy transition $n_2=3$
$\large\frac{1}{\lambda}=$$R_H\bigg[\large\frac{1}{n_1^2}-\frac{1}{n_2^2}\bigg]$
$\large\frac{1}{\lambda}=$$R_H\bigg[\large\frac{1}{2^2}-\frac{1}{3^2}\bigg]$
$\Rightarrow 1.1\times 10^7\big[\large\frac{1}{4}-\frac{1}{9}\big]$
$\Rightarrow 1.1\times 10^7\times \large\frac{5}{36}$
$\lambda=6.55\times 10^{-7}m$
Now $E=\large\frac{hc}{\lambda}$
$\Rightarrow \large\frac{6.62\times 10^{-34}\times 3\times 10^8}{6.55\times 10^{-7}}$
$\Rightarrow 3.03\times 10^{-19}J$
If N electrons show this transition in 1g atom of H then
Energy released=$E\times N$
$\Rightarrow 3.03\times 10^{-19}\times 6.023\times 10^{23}$
$\Rightarrow 18.25\times 10^4$
$\Rightarrow 182.5KJ$
Hence (a) is the correct answer.
 
Comment
A)
Need homework help? Click here.
∆e=13.6 z²[1/n1²-1/n2²] For 1 mole, 6*10²³ * 13.6 * 5/36. Z=1(atomic no. of H = 1) 182.5 kj. n1= 2, n2= 4 Simple method by MANDAR Comment if liked it.
Home Ask Homework Questions
...