Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Calculate the energy emitted when electrons of 1.0g atom of hydrogen under go transition giving the spectral lines of lowest energy in the visible region of its atomic spectra.$R_H=1.1\times 10^7m^{-1},c=3\times 10^8msec^{-1}$ and $h=6.62\times 10^{-34}Jsec$


Can you answer this question?

2 Answers

0 votes
For visible line spectrum,(i.e) Balmer series $n_1=2$.Also for minimum energy transition $n_2=3$
$\Rightarrow 1.1\times 10^7\big[\large\frac{1}{4}-\frac{1}{9}\big]$
$\Rightarrow 1.1\times 10^7\times \large\frac{5}{36}$
$\lambda=6.55\times 10^{-7}m$
Now $E=\large\frac{hc}{\lambda}$
$\Rightarrow \large\frac{6.62\times 10^{-34}\times 3\times 10^8}{6.55\times 10^{-7}}$
$\Rightarrow 3.03\times 10^{-19}J$
If N electrons show this transition in 1g atom of H then
Energy released=$E\times N$
$\Rightarrow 3.03\times 10^{-19}\times 6.023\times 10^{23}$
$\Rightarrow 18.25\times 10^4$
$\Rightarrow 182.5KJ$
Hence (a) is the correct answer.
answered Jan 15, 2014 by sreemathi.v
0 votes
∆e=13.6 z²[1/n1²-1/n2²] For 1 mole, 6*10²³ * 13.6 * 5/36. Z=1(atomic no. of H = 1) 182.5 kj. n1= 2, n2= 4 Simple method by MANDAR Comment if liked it.
answered Jul 6, 2016 by mandarkulkarni11

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App