Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Given electric field $ \overrightarrow {E} =[1 \times (d + x) \hat i +E_0 \hat j ] N/c$. If a closed surface as shown below is considered , find the change enclosed.


$(A)\;\frac{acd}{2} \in_0 \\ (B)\;\frac{abc \in _o}{2} \\ (C)\;\frac{abd \in _0}{2} \\ (D)\;None $

Can you answer this question?

1 Answer

0 votes
$\phi ABCD=-acd$
$\phi CDEF=-bcE_0$
$\phi ABEF=bcE_0 + c \int \limits _o^a (d+x) dy$
$\qquad= bcE_0 +acd+ c \int \limits_0^a x dxy$
$\qquad= bcE_0 +acd +\large\frac{ca}{b} \int\limits_0^b x dx$
$\bigg[ \therefore \large\frac{x}{b}+ \frac{y}{a} $$=1=> \frac{dx}{b} =\frac{-dy}{a}\bigg]$
$\qquad= bcE_0 +acd +\large\frac{acb}{2}$
$\phi _{net}=\large\frac{q_{in}}{\in _0}$
$q_{in}=\large\frac{abc \in _o}{2}$
hence b is the correct answer.
answered Jan 15, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App