Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the values of p and q so that $f(x)=\left \{\begin{array}{1 1}x^2+3x+p, & if \;x\leq\;1\\qx+2, & if\;x>\;1\end{array}\right.$is differentiable at $x=1.$

Can you answer this question?

1 Answer

0 votes
  • A function is not differentiable if $LHL\neq RHL.$
  • A function is not differentiable if LHL or RHL does not exist.
Step 1:
Given : $f(x)=\left\{\begin{array}{1 1}x^2+3x+p, & if\;x\leq 1\\qx+2,&if\;x>1\end{array}\right.$
It is given that the function is differentiable at $x=1$ and every differentiable function is continuous .So $f(x)$ is continuous at $x=1$
Therefore $\lim\limits_{\large x\to 1}f(x)=\lim\limits_{\large x\to 1^+}f(x)=f(1)$
$\Rightarrow \lim\limits_{\large x\to 1}x^2+3x+p=\lim\limits_{\large x\to 1}qx+2$
$\Rightarrow p+4=q+2$
$\Rightarrow p-q=-2$-------(1)
Now $f(x)$ is differentiable at $x=1$
$\Rightarrow$ (LHD at $x=1)$=(RHD at $x=1)$
$\Rightarrow \lim\limits_{\large x\to 1^-}\large\frac{f(x)-f(1)}{x-1}$$=\lim\limits_{\large x\to 1^+}\large\frac{f(x)-f(1)}{x-1}$
$\Rightarrow \lim\limits_{\large x\to 1}\large\frac{(x^2+3x+p)-(p+4)}{x-1}=$$\lim\limits_{\large x\to 1}\large\frac{(qx+2)-(q+2)}{x-1}$
$\Rightarrow \lim\limits_{\large x\to 1}\large\frac{(x^2+3x-4)}{x-1}=$$\lim\limits_{\large x\to 1}\large\frac{qx-q}{x-1}$
$\Rightarrow \lim\limits_{\large x\to 1}\large\frac{(x+4)(x-1)}{x-1}=$$\lim\limits_{\large x\to 1}\large\frac{q(x-1)}{x-1}$
$\Rightarrow \lim\limits_{\large x\to 1}(x+4)=\lim\limits_{\large x\to 1}q$
Step 2:
Applying the limits we get,
Substituting in equ(1) we get,
Hence the values of $p$ and $q$ are 3 and 5 respectively.
answered Jul 3, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App