Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $x^my^n=(x+y)^{m+n}$,Prove that $(i)\;\large\frac{dy}{dx}=\frac{y}{x}$

This is the first part of the multi-part question Q80

Can you answer this question?

1 Answer

0 votes
  • A function $f(x,y)$ of two variables $x$ and $y$,is said to be implicit,which are jumbled in such a way,that it is not possible to write y exclusively as a function of $x$.
  • $\large\frac{d}{dx}$$\phi(y)=\large\frac{d}{dy}.$$\phi(y).\large\frac{dy}{dx}$
Step 1:
Given : $x^{\large m}y^{\large n}=(x+y)^{\large m+n}$
Take $\log$ on both sides
$\log x^m+\log y^n=(m+n)\log (x+y)$
$\Rightarrow m\log x+n\log y=(m+n)\log (x+y)$
Differentiating w.r.t $x$ on both sides we get,
$\Rightarrow \large\frac{m}{x}+\frac{n}{y}\frac{dy}{dx}=\frac{(m+n)}{(x+y)}$$\big(1+\large\frac{dy}{dx}\big)$
Step 2:
$\Rightarrow \large\frac{dy}{dx}\bigg(\large\frac{n(x+y)-y(m+n)}{y(x+y)}\bigg)=\large\frac{x(m+n)-m(x+y)}{x(x+y)}$
On simplifying we get,
$\Rightarrow \large\frac{dy}{dx}\big(\large\frac{nx-my}{y}\big)=\large\frac{nx-my}{x}$
Therefore $\large\frac{dy}{dx}=\frac{y}{x}$
Hence proved.
answered Jul 3, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App