Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Two hydrogen atoms collide head on and end up with zero kinetic energy.Each atom then emits a photon of wavelength 121.6nm.Which transition leads to this wavelength ?How fast were the hydrogen atoms traveling before collision?$R_H=1.097\times 10^7m^{-1}$ and $m_H=1.67\times 10^{-27}Kg$

$\begin{array}{1 1}(a)\;4.43\times 10^4m/s&(b)\;2.43\times 10^4m/s\\(c)\;4.43\times 10^2m/s&(d)\;1.6\times 10^4m/s\end{array}$

Can you answer this question?

1 Answer

0 votes
$\large\frac{1}{121.6\times 10^{-9}}=$$1.097\times 10^7\big[\large\frac{1}{1^2}-\frac{1}{n^2}\big]$
The energy released is due to collision and all the kinetic energy is released in form of photon.
$\large\frac{1}{2}$$1.67\times 10^{-27}\times u^2=\large\frac{6.626\times 10^{-34}\times 3\times 10^8}{121.6\times 10^{-9}}$
$u=4.43\times 10^4m/s$
Hence (a) is the correct answer.
answered Jan 16, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App