logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class12  >>  Probability

If $P(A)=\large\frac{1}{12}\: P(B)=\large\frac{5}{12}\: and \: P(B/A) = \large\frac{1}{15}$ then $P(A \cup B )$ is equal to

$\begin {array} {1 1} (A)\;\large\frac{89}{180} & \quad (B)\;\large\frac{90}{180} \\ (C)\;\large\frac{91}{180} & \quad (D)\;\large\frac{92}{180} \end {array}$

 

1 Answer

$ \because P(A)=\large\frac{1}{12}$
$P(B) = \large\frac{5}{12}$
$P(B/A) = \large\frac{1}{15}$
We know that $ P(B/A) = \large\frac{P(A \cap B )}{P(A)}$
$ = \large\frac{1}{15}$
$ = \large\frac{P(A \cap B )}{\large\frac{1}{12}}$
$ \Rightarrow P(A \cap B ) = \large\frac{1}{180}$
Also, $ P(A \cup B ) = P(A)+P(B)-P(A \cap B )$
$ = -\large\frac{1}{12}+\large\frac{5}{12}-\large\frac{1}{180}$
$ = \large\frac{15+75-1}{180}$
$ = \large\frac{89}{180}$
Ans : (A)
answered Jan 16, 2014 by thanvigandhi_1
 

Related questions

...