Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find $\large \frac{dy}{dx},\normalsize if\;y=\large x^{tan x}+\sqrt{\large\frac{x^2+1}{2}}$

Can you answer this question?

1 Answer

0 votes
  • If $y=[f(x)]^{g(x)}$,taking $\log$ on both sides we have $\log y=g(x).\log[f(x)]$.
Step 1:
$y=x^{\large\tan x}+\sqrt{\large\frac{x^2+1}{2}}$
Consider $y=x^{\large \tan x}$
Take $\log$ on both sides,
$\log y=\tan x.\log x$
Differentiating w.r.t $x$ on both sides we get,
$\large\frac{1}{y}\frac{dy}{dx}=$$\tan x.\large\frac{1}{x}$$+\log x.\sec^2 x$
Therefore $\large\frac{dy}{dx}=x^{\large \tan x}\bigg[\large\frac{\tan x}{x}$$+\log x.\sec^2 x\bigg]$-----(1)
Step 2:
Consider $y=\sqrt{\large\frac{x^2+1}{2}}$
Square on both sides
Now differentiate w.r.t $x$ on both sides,
$\Rightarrow \large\frac{dy}{dx}=\frac{x}{y}$
Substituting for $y$ we get,
Therefore $\large\frac{dy}{dx}=\large\frac{x\sqrt 2}{\sqrt{x^2+1}}$-----(2)
Step 3:
Combining equ(1) and equ(2) we get,
$\large\frac{dy}{dx}=x^{\large \tan x}\bigg[\large\frac{\tan x}{x}$$+\log x.\sec^2x\bigg]+\large\frac{x\sqrt 2}{\sqrt{x^2+1}}$
answered Jul 4, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App