logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

Sum of $n$ terms of series $S$ = $1$ + $2 \;(1+\frac{1}{n})$ + $3(1+\frac{1}{n})^2$ + ....is given by

$(a)\;(n+1)^2\qquad(b)\;n(n+1)\qquad(c)\;n^2\qquad(d)\;\frac{n(n+1)}{2}$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (c) $n^2$
Explanation : Let $\;1+\frac{1}{n}=x$
$S=1+2x+3x^2+4x^3+....$
$x\;S=x+2x^2+3x^3+4x^4+...$
Subtracting ,
$(1-x)\;S=1+x+x^2+...+x^{n-1}-nx^n$
$=\frac{1-x^n}{1-x}-nx^n$
$\frac{-1}{n}\;S=(-n)\;[1-(1+\frac{1}{n})^n]-n[1+\frac{1}{n}]^n$
$=-n$
$S=n^2.$
answered Jan 20, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...