Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Differentiate the functions given in w.r.t. $x : $ $ x ^{\large\sin x} + (\sin x)^{\large\cos x} $

Can you answer this question?

1 Answer

0 votes
  • $\large\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx}$
  • $\log m^{\large n}=n\log m$
  • According to product rule we have
  • $(uv)'=u'v+uv'$
Step 1:
Let $y=x^{\large\sin x}+(\sin x)^{\large\cos x}$
It is of the form
Let $u=x^{\large\sin x}$
Taking $\log$ on both sides
$\log u=\log x^{\large\sin x}$
$\qquad\;=\sin x\log x$
Step 2:
Differentiating with respect to $x$
$\large\frac{1}{u}\frac{du}{dx}=$$\cos x\log x+\sin x$$.\large\frac{1}{x}$
We know that $(uv)'=u'v+uv'$
$\Rightarrow \cos x\log x+\large\frac{\sin x}{x}$
$\large\frac{du}{dx}=$$u.\cos x\log x$$.\large\frac{\sin x}{x}$
Substitute the value of $u$
$\Rightarrow x^{\large\sin x}(\cos x\log x+\large\frac{\sin x}{x})$
Step 3:
Consider $v=(\sin x)^{\large\cos x}$
Taking $\log$ on both sides
$\log v=\log(\sin x)^{\large\cos x}$
$\log m^{\large n}=n\log m$
$\Rightarrow \cos x\log(\sin x)$
Differentiating with respect to $x$
$\large\frac{1}{v}\frac{dv}{dx}$$=(-\sin x)\log(\sin x)+\cos x.\large\frac{d}{dx}$$\log(\sin x)$
We know that $(uv)'=u'v+uv'$
$u=\cos x$
$v=\log\sin x$
$\Rightarrow -\sin x\log(\sin x)+\cos x.\large\frac{1}{\sin x}.\frac{d}{dx}$$(\sin x)$
$\Rightarrow -\sin x\log(\sin x)+\large\frac{\cos x}{\sin x}.$$(\cos x)$
$\Rightarrow -\sin x\log(\sin x)+\large\frac{\cos^2 x}{\sin x}.$
$\large\frac{1}{v}\frac{dv}{dx}$$=(-\sin x)\log(\sin x)+\large\frac{\cos^2x}{\sin x}$
$\large\frac{dv}{dx}$$=v.[(-\sin x)\log(\sin x)+\large\frac{\cos^2x}{\sin x}]$
$\large\frac{dv}{dx}$$=(\sin x)^{\large\cos x}.[(-\sin x)\log(\sin x)+\large\frac{\cos^2x}{\sin x}]$
Step 4:
$\quad= x^{\large\sin x}(\cos x\log x+\large\frac{\sin x}{x})$+$(\sin x)^{\large\cos x}[\large\frac{\cos^2x-\sin^2x\log(\sin x)}{\sin x}]$
answered May 9, 2013 by sreemathi.v
edited May 9, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App