Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $y=\sqrt{sin x+y}$, then $\Large \frac{dy}{dx}$ is equal to

\[ \begin{array}{1 1}(A)\;\frac{\cos x}{2y-1} & (B)\;\frac{\cos x}{1-2y}\\(C)\;\frac{\sin x}{1-2y} & (D)\;\frac{\sin x}{2y-1}\end{array}\]

Can you answer this question?

1 Answer

0 votes
  • If the variable $x$ and $y$ are connected by a relation of the form $f(x,y)=0$ and it is not possible to express $y$ as a function of $x$,then it is said to be implicit function.
  • Hence $\phi(y)$ w.r.t $x$ is $\large\frac{d\phi}{dy}.\frac{dy}{dx}$
Step 1:
$y=\sqrt{\sin x+y}$
$\large\frac{dy}{dx}=\large\frac{1}{2}$$(\sin x+y)^{\Large\frac{-1}{2}}(\cos x+\large\frac{dy}{dx})$
$\Rightarrow \large\frac{1}{2\sqrt{\sin x+y}}\times$$ \big(\cos x+\large\frac{dy}{dx}\big)$
$\large\frac{dy}{dx}$$\big(1-\large\frac{1}{2\sqrt{\sin x+y}}\big)=\large\frac{\cos x}{2\sqrt{\sin x+y}}$
$\Rightarrow \large\frac{dy}{dx}=\large\frac{\Large\frac{\cos x}{2\sqrt{\sin x+y}}}{1-\Large\frac{1}{2\sqrt{\sin x+y}}}$
Step 2:
On simplifying we get,
$\large\frac{dy}{dx}=\large\frac{\cos x}{2\sqrt{\sin x+y}-1}$
But $y=\sqrt{\sin x+y}$
$\qquad=\large\frac{\cos x}{2y-1}$
Hence $A$ is the correct option.
answered Jul 4, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App