logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

Let $\;a_{r}=\int\limits_{0}^{\frac{\pi}{4}}\;tan^{r}\;x\;dx$ , then $\;a_{1}+a_{3}\;,a_{2}+a_{4}\;,a_{3}+a_{5}\;$ are in

$(a)\;AP\qquad(b)\;GP\qquad(c)\;HP\qquad(d)\;AGP$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (c) HP
Explanation : $\;a_{r}+a_{r+2}=\int\limits_{0}^{\frac{\pi}{4}}\;tan^{r}\;x\;(1+tan^{2}\;x)\;dx$
$=\int\limits_{0}^{\frac{\pi}{4}}\;tan^{r}\;x\;sec^{2}\;x\;dx$
$=\;[\frac{tan^{r+1\;x}}{r+1}]_{0}^{\frac{\pi}{4}}=\frac{1}{r+1}$
$a_{1}+a_{3}=\frac{1}{2}$
$a_{2}+a_{4}=\frac{1}{3}\quad\;a_{3}+a_{5}=\frac{1}{4}$
They are in HP.
answered Jan 21, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...