logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

Find $\frac{1}{3}+\frac{1}{15}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}$ +....upto n terms

$\begin{array}{1 1} \large\frac{4}{2n-1} \\ \frac{1}{2n+1} \\ \frac{1}{n+1} \\ \frac{n}{2n+1} \end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (d) $\;\frac{2}{2n+1}$
Explanation : $\;a_{r}=\frac{1}{(2r)^2-1}$
$=\large\frac{1}{(2r-1)(2r+1)}$
$=\frac{1}{2}\;[\large\frac{1}{2r-1}-\large\frac{1}{2r+1}]$
$\sum_{r=1}^n\;a_{r}=\frac{1}{2}\;\sum_{r=1}^{n}\;[\large\frac{1}{2r-1}-\large\frac{1}{2r+1}]$
$=\frac{1}{2}\;[1-\large\frac{1}{2n+1}]$
$=\large\frac{n}{2n+1}\;.$
answered Jan 21, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...