logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

If $\;px^2+\large\frac{q}{x}\;\geq\;r\;$ for every +ve x $\;(p>0 , q>0)\;,\;$ then $\;27pq^2\;$ can not be less than

$(a)\;r^3\qquad(b)\;4r^3\qquad(c)\;8r^3\qquad(d)\;4r^2$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (b) $\;4r^3$
Explanation : $\;AM\;\geq\;GM$
$\frac{1}{3}\;(px^2+\large\frac{q}{2x}+\large\frac{q}{2x})\;\geq\;(px^2.\large\frac{q}{2x}.\large\frac{q}{2x})$
$\large\frac{1}{3}(px^2+\large\frac{q}{x})\;\geq\;(\large\frac{pq^2}{4})^{\frac{1}{3}}$
Least value of $\;px^2+\frac{q}{x}\;$ is r
$3(\large\frac{pq^2}{4})^{\frac{1}{3}}\;\geq\;r$
$27pq^2\;\geq\;4r^3.$
answered Jan 22, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...