Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the position vector of a point A in space such that $\overrightarrow{OA}$ is inclined at $60^{\circ}$ to OX and at $45^{\circ}$ to OY and $\mid \overrightarrow{OA}\mid$=10 units.

$\begin{array}{1 1} \hat i + \sqrt 2 \hat j + \hat k \\ 5\hat i + 5\sqrt 2 \hat j - 5 \hat k \\ 10\hat i + 10\sqrt 2 \hat j + 10 \hat k \\ 5\hat i + 5\sqrt 2 \hat j + 5 \hat k\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If $\alpha ,\beta, \gamma $ are the angles made by a vector with the $x,y$ and $z$ axes respectivley, then the sum of the squares of the cosines made by there angles is one $(ie) \cos ^2 \alpha +\cos ^2 \beta +\cos ^2 \gamma=1$
we know that the sum of the squares of the direction cosines is one. $(ie) \cos ^2 \alpha +\cos ^2 \beta +\cos ^2 \gamma=1$
It is given that $\alpha =60 ^{\circ}$ and $\beta=45^\circ$
Therefore $\cos ^2 60 ^{\circ}+\cos ^2 45^{\circ}+\cos ^2 \gamma=1$
$\cos 60=\large\frac{1}{2};$$ \cos 45=\large\frac{1}{\sqrt 2}$
$(ie) \bigg(\large\frac{1}{2}\bigg)^2+\bigg(\frac{1}{\sqrt 2}\bigg)^2+$$\cos ^2 \gamma=1$
$=> \large\frac{1}{4}+\frac{1}{2}$$+\cos ^2 \gamma=1$
On simplifying we get,
$\cos ^2 \gamma=1-\large\frac{1}{4}-\frac{1}{2}$
It is given that the magnitude of the given vector in 10 units
$(ie) |\overrightarrow {OA}|=10$
Therefore $\overrightarrow {OA}=10$
Therefore $\overrightarrow {OA}=10 \bigg(\large\frac{1}{2} \hat i+\frac{1}{\sqrt 2}\hat j+\frac {1}{2}\hat k\bigg)$
$=5 \hat i+5 \sqrt 2 \hat j+5 \hat k$
This is the required position vector
answered Jun 10, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App