Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Prove that the lines $x=py+q;z=ry+s$ and $x=p'y+q';z=r'y+s'$ are perpendicular if $pp'+rr'+1=0.$

Can you answer this question?

1 Answer

0 votes
  • If two lines are perpendicular, then $a_1a_2+b_1b_2+c_1c_2=0$ where $(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$ are the direction ratios of the two lines.
Given $ x=py+q\; ;\;z=ry+s$ and
$ x=p'y+q'\; ;\;z=r'y+s'$
The given equation are not in symmetrical.
Let us first put them in symmetrical form.
Equation of the first line are
$ x=py+q\; ;\;z=ry+s$
This can be written as
or $\large\frac{x-b}{a}=\frac{y-0}{1}=\frac{z-d}{c}$-----(1)
Similarly $ x=p'y+q'\; ;\;z=r'y+s'$ can be written as,
or $\large\frac{x-b'}{a}=\frac{y-0}{1}=\frac{z-d'}{c'}$
Let $\overrightarrow {n_1}$ and $\overrightarrow {n_2}$ be the parallel vector to line $L1$ and $L2$ respectively
$\overrightarrow {n_1}=a \hat i+\hat j+c \hat k$ and $\overrightarrow {n_2}=a'\hat i+\hat j+c'\hat k $
we know $\overrightarrow {n_1}.\overrightarrow {n_2}=0$ if $\overrightarrow {n_1}$ is $\perp$ to $\overrightarrow {n_2}.$
$(ie)(a \hat i+\hat j+c \hat k).(a'\hat i+\hat j+c'\hat k)=0 $
Apply dot product rule we get
$aa' +1+cc'=0$
Hence proved.
answered Jun 10, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App