Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the equation of the plane through the points (2,1,0),(3,-2,-2) and (3,1,7).

Can you answer this question?

1 Answer

0 votes
  • Normal vector $\perp$ to both $\overrightarrow a\:and\:\overrightarrow b$ is
  • $\overrightarrow a\times \overrightarrow b=\left|\begin{array}{ccc}\hat i&\hat j&\hat k\\a_1&a_2&a_3\\b_1&b_2&b_3\end{array}\right|$
  • Vector equation of the plane passing through $\overrightarrow a$ and $\perp$ to $\overrightarrow n$ is $(\overrightarrow r-\overrightarrow a).\overrightarrow n=0$
Step 1:
Let the given points be
$A(2, 1, 0), B(3, -2, -2) C(3, 1, 7)$
The direction ratios of $ \overrightarrow{AB}$ is
$(ie) (3-2),(-2-1),(-2-0)$
$=(1, -3, -2)$
The direction ratios of $ \overrightarrow{BC}$ is
$(ie) (3-3),(1-(-2)),(7-(-2))$
$=(0, 3, 9)$
We know that normal vector $\overrightarrow n\:\:is\:\:\perp$ to $\overrightarrow {AB}\:\:and\:\:\overrightarrow {BC}$
Hence $ \overrightarrow n = \overrightarrow{AB}\times \overrightarrow{BC}$
$=\left|\begin{array}{ccc}\hat i&\hat j&\hat k\\1&-3&-2\\0&3&9\end{array}\right|$
$=(-27+6)\hat i-(9-0)\hat j+(3-0)\hat k$
$=-21\hat i - 9 \hat j+3 \hat k$
Step 2:
Vector equation of the plane is
$(\overrightarrow r-\overrightarrow a).\overrightarrow n=0$
We know $\overrightarrow r=x \hat i+y \hat j+z \hat k,\overrightarrow n=21 \hat i -9 \hat j+3 \hat k,$ and $\overrightarrow a=2 \hat i+ \hat j$
Substituting the respective values we get,
$\bigg[(x \hat i+y \hat j+z \hat k)-(2 \hat i+ \hat j)\bigg].(-21 \hat i -9 \hat j+3 \hat k)=0$
$\bigg[(x -2)\hat i+(y-1) \hat j+z \hat k\bigg].(-21 \hat i -9 \hat j+3 \hat k)=0$
On multiplying by using the dot product we get,
$=>21 x+42-9y+9+3z=0$
On further simplifying we get,
This is the required equation of the plane
answered Jun 12, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App