Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the angle between the lines whose direction cosines are given by the equations $l+m+n=0,l^2+m^2-n^2=0$

Can you answer this question?

1 Answer

0 votes
  • Angle between two lines is $cos \theta= \large\frac{\overrightarrow {b_1}.\overrightarrow {b_2}}{|\overrightarrow {b_1}||\overrightarrow {b_2}|} $
Step 1:
Given that $l+m+n=0$ -----(1)=>$l+m=-n$
and $l^2+m^2-n_2=0$-----(2)
Let us substitute for $'n'$ in equation (2) we get
=>$ l^2+m^2-l^2-m^2-2ml=0$
or $ 2ml=0$
(ie) either $ l = 0 \: or\: m=0$
Let us put $m=0$ in equation (1)
If $ m=0$ then $ l=-n$
direction ratios $(l,m,n)=(1, 0, -1)$
Let us put $l=0$ we get $m=-n$
direction ratios $(l,m,n)=(0, 1, -1)$
Step 2:
Let us find out $b_1.b_2$
Step 3:
Now substituting the above values in
$cos \theta= \large\frac{\overrightarrow {b_1}.\overrightarrow {b_2}}{|\overrightarrow {b_1}||\overrightarrow {b_2}|} $
$\cos \theta= \large\frac{1}{\sqrt 2\sqrt 2}=\frac{1}{2}$
answered Jun 11, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App