logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

Sum of the series $\;S=\large\frac{4}{7}-\large\frac{5}{7^2}+\large\frac{4}{7^3}-\large\frac{5}{7^4}+.....\;\infty\;$ is :

$(a)\;\large\frac{4}{43}\qquad(b)\;\large\frac{3}{11}\qquad(c)\;\large\frac{23}{48}\qquad(d)\;\large\frac{23}{24}$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (c) $\;\large\frac{23}{48}$
Explanation : $S=\large\frac{4}{7}-\large\frac{5}{7^2}+\large\frac{4}{7^3}-\large\frac{5}{7^4}+....\;\infty$
Explanation : $S=\large\frac{4}{7}-\large\frac{5}{7^2}+\large\frac{4}{7^3}-\large\frac{5}{7^4}+....\;\infty$
Explanation : $\large\frac{1}{7}S=\large\frac{4}{7^2}-\large\frac{5}{7^3}+\large\frac{4}{7^4}+....\;\infty$
Adding we get
$\large\frac{8}{7}S=\large\frac{4}{7}-\large\frac{1}{7^2}-\large\frac{1}{7^3}-\large\frac{1}{7^4}+...\;\infty$
$\large\frac{8}{7}S=\large\frac{4}{7}-\;[\large\frac{\large\frac{1}{7^2}}{1-\large\frac{1}{7}}]$
$\large\frac{8}{7}S=\large\frac{4}{7}-\large\frac{1}{4^2}$
$8S=4-\large\frac{1}{6}$
$S=\large\frac{23}{48}\;.$
answered Jan 23, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...