logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

Find sum of first n terms of series : $\;1+\large\frac{1}{1+2}+\large\frac{1}{1+2+3}+\;....$

$(a)\;\large\frac{n}{n-1}\qquad(b)\;\large\frac{2n}{n+1}\qquad(c)\;\large\frac{2n}{n-1}\qquad(d)\;\large\frac{n}{n+1}$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (b) $\;\large\frac{2n}{n+1}$
Explanation : $a_{r}=\large\frac{1}{\large\frac{r(r+1)}{2}}$
$=\large\frac{2}{r(r+1)}$
$=2\;[\large\frac{1}{r}-\large\frac{1}{r+1}]$
$S=\sum_{r=1}^{n}\;a_{r}$
$=\sum_{r=1}^{n}\;2\;[\large\frac{1}{r}-\large\frac{1}{r+1}]$
$=2\;[1-\large\frac{1}{n+1}]$
$=\large\frac{2n}{n+1}.$
answered Jan 23, 2014 by yamini.v 1 flag
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...