Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Wave Optics
0 votes

In a Young's double slit experiment 'd' distance between slit is $1 \times 10^{-4}\;m$ and $D=1\; m $. ( distance of screen from slits ) At a point P on the screen the resulting intensity is equal to the intensity due to individual slit $I_0$ The distance of P from central maxima when wavelength of $x=6000\;A^{\circ}$ is

$(a)\;1\;mm \\ (b)\;2\;mm \\ (c)\;2.1\;cm \\ (d)\;1.2\;cm $

Can you answer this question?

1 Answer

0 votes
When a phase difference of exists between the two interfering waves.
$I= 4 I_0 \cos^2 \large\frac{\phi}{2}$
$I_0 =4 I_0 \cos^2 \large\frac{\phi}{2}$
$\cos \large\frac{\phi}{2} =\large\frac{1}{2}$
$\phi =\large\frac{2 \pi}{3}$
$\therefore $ The path difference $\Delta x$ is given by
$\phi =\large\frac{2 \pi}{3} =\large\frac{ 2 \pi }{\lambda}$$ (\Delta x)$
$\Delta x= \large\frac{\lambda}{3}$
Also If y is distance from central maxima
$\Delta x =\large\frac{yd}{D}$
$\large\frac{\lambda}{3} =y . \large\frac{d}{D}$
$y= \large\frac{\lambda}{3 \times \Large\frac{10^{-4}}{1}}$
$y= \large\frac{6 \times 10^{-7}}{3 \times 10^{-4}}$
$\qquad= 2 \times 10^{-3} m$
$\qquad= 2\;mm$
Hence b is the correct answer.
answered Jan 23, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App