Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the foot of perpendicular from the point(2,3,-8)to the line $\Large \frac{4-x}{2}\;=\frac{y}{6}\;=\frac{1-z}{3}$.Also,find the perpendicular distance from the given point to the line.

Can you answer this question?

1 Answer

0 votes
  • If two lines are $ \perp$ then $a_1a_2+b_1b_2+c_1c_2=0$, where $(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$ are the direction ratios of the two lines.
Step 1:
Let the given equation be $\large\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}=\lambda$.
This can be written as
Therefore the direction ratios of the line is $(-2,6,-3)$
Therefore the coordinates of any point on the line is
$x=4-2 \lambda,y=6 \lambda, z=1-3 \lambda$
Step 2:
Let $ Q(4-2\lambda, 6\lambda, 1-3\lambda)$ be the foot of $ \perp$ from the point $ P(2, 3, -8)$ on line (1)
We know the direction ratios of any line segement $PQ$ is given by $(x_2-x_1),(y_2-y_1),(z_2-z_1)$
The direction cosines of $ \overline{PQ} $ is given by
$=(-2\lambda+4-2), (6\lambda-3), (-3\lambda+1+8)$
$=( -2\lambda+2, 6 \lambda-3, -3\lambda+9)$
Now $Q$ is the foot of the perpendicular of the line (1)
(ie) $\overrightarrow {PQ}$ is the perpendicular to the line (i)
hence the sum of the product of this direction ratios is 0
$=(-2\lambda+2).(-2)+ (6\lambda-3).6+ (-3\lambda+9).(-3)=0$
$=4\lambda-4+ 36\lambda-18+9\lambda-27=0$
On simplifying we get,
Therefore $\lambda=1$
Step 3:
Substituting $\lambda$ in $Q$ we get the
Therefore the perpendicular distance $=\sqrt {0^2+3^2+6^2}$
$=\sqrt {45}$
answered Jun 11, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App