Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the equations of the line passing through the point $(3,0,1)$ and parallel to the planes $x+2y=0$ and $3y-z=0.$

Can you answer this question?

1 Answer

0 votes
  • Vector equation of a line passing through a point and parallel to a vector is $\overrightarrow r=\overrightarrow a+ \lambda \overrightarrow b$ where $\lambda \in R$
Step 1:
It is given that the line passes through the point $(3,0,1)$ and parallel to the planes $x+2y=0$ and $ 3y-z=0$
Let $\overrightarrow a=3 \hat i+\hat k$
Let $\overrightarrow n$ be the normal vector to the required plane.
Then $\overrightarrow n$ is perpendicular to the normal to the plane.$ x+2y=0$ and $ 3y-z=0$
(ie)It is $\perp$ to the vector $\overrightarrow n_1 =\hat i+2 \hat j$ and $\overrightarrow n_2= 3\hat j-\hat k$
Therefore $\overrightarrow n=\overrightarrow n_1 \times \overrightarrow n_2=\begin{vmatrix} \hat i & \hat j & \hat k \\ 1 & 2 & 0 \\ 0 & 3 & -1 \end{vmatrix}$
On expanding we get,
$\overrightarrow n=\hat i(-2)-\hat j(-1)+\hat k(3)$
$\quad=-2 \hat i+\hat j+ 3\hat k$
Hence its direction ratios are $ (-2,1,3)$
Step 2:
Therefore equation of the line is
$\overrightarrow r=(3 \hat i+\hat k)+\lambda(-2\hat i+\hat j+3 \hat k)$
But we know $\overrightarrow r= x \hat i+y \hat j+z \hat k$
Substituting for $\overrightarrow r$ we get,
$(x-3) \hat i+y \hat j+(z-1) \hat k=-\lambda(-2 \hat i+\hat j+ 3 \hat k)$
This is the required equation of the line
answered Jun 11, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App