logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

If 1 , 3 , 8 are first three terms of an arithmetic - geometric progression (with +ve common difference ) , the sum of next three terms is :

$(a)\;180\qquad(b)\;160\qquad(c)\;140\qquad(d)\;120$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (a) 180
Explanation : Given , a=1
$(a+d)\;r=3$
$(a+2d)\;r^2=8$
$(1+d)\;r=3$
$(1+2d)\;r^2=8------(1)$
$(1+d)^2\;r^2=9$
$(1+2d+d^2)\;r^2=9----(2)$
Subtracting (1) from (2)
$d^2\;r^2=1$
$d\;r=1$
$d=\large\frac{1}{r}$
$(1+d)\;r=3$
$(1+\large\frac{1}{r})\;r=3$
$r+1=3$
$r=2\quad\;d=\frac{1}{2}$
Next three terms ,
$(1) \quad\; (1+3d)\;r^3 =(1+\large\frac{3}{2})\;8=20$
$(2)\quad\;(1+4d)\;r^4=(1+\large\frac{4}{2})\;16=48$
$(3)\quad\;(1+5d)\;r^5=(1+\large\frac{5}{2})\;32=112$
Sum of next three terms = $\;20+48+112=180\;.$
answered Jan 23, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...