Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

If $a_{1}, a_{2}, a_{3},.....$ are in HP and $f (k)$ = $\sum_{r=1}^{n}\;a_{r}-a_{k}$, then $\large\frac{a_{1}}{f (1)}$, $\large\frac{a_{2}}{f (2)}$, $\large\frac{a_{3}}{f (3)}$,...,$\large\frac{a_{n}}{f (n)}$ are in


Can you answer this question?

1 Answer

0 votes
Answer : (c) HP
Explanation : $\;f (k)=\sum_{r=1}^{n}\;a_{r}-a_{k}$
$\sum_{r=1}^{n}\;a_{r}=a_{k}+ f (k)$
$a_{1}+f (1)+=a_{2}+f (2)=a_{3}+f (3)+......$
$Now\;a_{1} , a_{2} , a_{3} ....\;are\;in\;HP$
$\large\frac{1}{a_{1}} , \large\frac{1}{a_{2}} , \large\frac{1}{a_{3}},...are\;in\;AP$
$\large\frac{a_{1}+f (1)}{a_{1}}\;,\large\frac{a_{2}+f (2)}{a_{2}}\;\large\frac{a_{3}+f (3)}{a_{3}}\;,..\;are\;in\;AP$
$\large\frac{f (1)}{a_{1}} , \large\frac{f (2)}{a_{2}} , \large\frac{f (3)}{a_{3}},...are\;in\;AP$
$\large\frac{a_{1}}{f (1)}\;,\large\frac{a_{2}}{f (2)}\;,\large\frac{a_{3}}{f (3)}\;...are\;in\;HP$
answered Jan 23, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App