Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Physics  >>  Class12  >>  Wave Optics
0 votes

What is the angular separation between two lines of $\lambda_1 =5882 A^{\circ}$ and $\lambda_2 =5852A^{\circ}$ in first order grating with 6000 lines per cm in normal incidence.

$(a)\;2.5 \times 10^{-3}\;rad \\ (b)\;1.8 \times 10^{-3}\;rad \\ (c)\;3.6 \times 10^{-3}\;rad \\ (d)\;1.8 \times 10^{-4}\;rad $

Can you answer this question?

1 Answer

0 votes
For normal incidence
$n \lambda = d\sin \theta$
$\sin \theta =\large\frac{\lambda}{d}$
$(\sin \theta_1 - \sin \theta _2 ) =\large\frac{1}{d} $$(\lambda_1 -\lambda_2)$
For small angle
$\theta_1 -\theta_2 =\large\frac{1}{d}$$ (5882 -5852) \times 10^{-10}$
Since there are 6000 lines in 1 cm
$d= \large\frac{10^{-2}}{6000} $$m$
$\therefore (\theta_1 -\theta_2 )= \large\frac{30 \times 10^{-10}}{\Large\frac{10^{-2}}{6000}}$
$\qquad= 1.8 \times 10^{-3} rad$
Hence b is the correct answer.
answered Jan 23, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App