logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Sequence and Series
0 votes

If sides of $\bigtriangleup ABC \;(a, b, c)$ are in AP, $cot\;{\large\frac{c}{2}}$ equals

$(a)\;3\;tan\;\large\frac{B}{2}\qquad(b)\;3\;tan\;\large\frac{A}{2}\qquad(c)\;3\;cot\;\large\frac{B}{2}\qquad(d)\;3\;cot\;\large\frac{A}{2}$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (b) $3\;tan\;\large\frac{A}{2}$
Explanation : a , b , c are in AP
$2b=a+c$
$a+b+c = 3b$
$3b=2s$
$cot\;\large\frac{c}{2}=\sqrt{\large\frac{s(s-c)}{(s-a)(s-b)}}$
$=\sqrt{\large\frac{2s(2s-2c)}{(2s-2a)(2s-2b)}}$
$=\sqrt{\large\frac{3b(2s-2c)}{(2s-2a)b}}$
$=3\;\sqrt{\large\frac{b(s-c)}{3b(s-a)}}$
$=3\;\sqrt{\large\frac{(3b-2b)(s-c)}{3b(s-a)}}$
$=3\;\sqrt{\large\frac{(2s-2b)(s-c)}{2s(s-a)}}$
$=3\;\sqrt{\large\frac{(s-b)(s-c)}{s(s-a)}}$
$=3\;tan\;\large\frac{A}{2}\;.$
answered Jan 23, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...